Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The influence of tropospheric biennial oscillation on mid-tropospheric CO2

Identifieur interne : 000008 ( PascalFrancis/Corpus ); précédent : 000007; suivant : 000009

The influence of tropospheric biennial oscillation on mid-tropospheric CO2

Auteurs : JINGQIAN WANG ; XUN JIANG ; Moustafa T. Chahine ; Mao-Chang Liang ; Edward T. Olsen ; Luke L. Chen ; Stephen J. Licata ; Thomas S. Pagano ; Yuk L. Yung

Source :

RBID : Pascal:14-0045187

Descripteurs français

English descriptors

Abstract

Mid-tropospheric CO2 retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO2 interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO2 for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO2 transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO2 anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO2 over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO2 is to be smaller than that in the AIRS observations.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0094-8276
A02 01      @0 GPRLAJ
A03   1    @0 Geophys. res. lett.
A05       @2 38
A06       @2 20
A08 01  1  ENG  @1 The influence of tropospheric biennial oscillation on mid-tropospheric CO2
A11 01  1    @1 JINGQIAN WANG
A11 02  1    @1 XUN JIANG
A11 03  1    @1 CHAHINE (Moustafa T.)
A11 04  1    @1 LIANG (Mao-Chang)
A11 05  1    @1 OLSEN (Edward T.)
A11 06  1    @1 CHEN (Luke L.)
A11 07  1    @1 LICATA (Stephen J.)
A11 08  1    @1 PAGANO (Thomas S.)
A11 09  1    @1 YUNG (Yuk L.)
A14 01      @1 Department of Earth and Atmospheric Sciences, University of Houston @2 Houston, Texas @3 USA @Z 1 aut. @Z 2 aut.
A14 02      @1 Jet Propulsion Laboratory, California Institute of Technology @2 Pasadena, California @3 USA @Z 3 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut. @Z 8 aut.
A14 03      @1 Research Center for Environmental Changes, Academia Sinica @2 Taipei @3 TWN @Z 4 aut.
A14 04      @1 Graduate Institute of Astronomy, National Central University @2 Jhongli @3 TWN @Z 4 aut.
A14 05      @1 Division of Geological and Planetary Sciences, California Institute of Technology @2 Pasadena, California @3 USA @Z 9 aut.
A20       @2 L20805.1-L20805.6
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 16687 @5 354000501660820390
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 14-0045187
A60       @1 P
A61       @0 A
A64 01  1    @0 Geophysical research letters
A66 01      @0 USA
C01 01    ENG  @0 Mid-tropospheric CO2 retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO2 interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO2 for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO2 transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO2 anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO2 over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO2 is to be smaller than that in the AIRS observations.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Troposphère @5 01
C03 01  2  ENG  @0 troposphere @5 01
C03 02  X  FRE  @0 Oscillation biennale @5 02
C03 02  X  ENG  @0 Biennal oscillation @5 02
C03 02  X  SPA  @0 Oscilación bienal @5 02
C03 03  X  FRE  @0 Dioxyde de carbone @2 NK @2 FX @5 03
C03 03  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 03
C03 03  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 03
C03 04  2  FRE  @0 Air @5 04
C03 04  2  ENG  @0 air @5 04
C03 05  X  FRE  @0 Variation interannuelle @5 05
C03 05  X  ENG  @0 Interannual variation @5 05
C03 05  X  SPA  @0 Variación interanual @5 05
C03 06  2  FRE  @0 Région Pacifique @2 564 @5 06
C03 06  2  ENG  @0 Pacific region @2 564 @5 06
C03 06  2  SPA  @0 Región Pacífico @2 564 @5 06
C03 07  2  FRE  @0 Périodicité @5 07
C03 07  2  ENG  @0 periodicity @5 07
C03 07  2  SPA  @0 Periodicidad @5 07
C03 08  2  FRE  @0 Résistance mécanique @5 08
C03 08  2  ENG  @0 strength @5 08
C03 08  2  SPA  @0 Resistencia mecánica @5 08
C03 09  2  FRE  @0 Mousson @5 09
C03 09  2  ENG  @0 monsoons @5 09
C03 09  2  SPA  @0 Monzón @5 09
C03 10  X  FRE  @0 Circulation Walker @5 10
C03 10  X  ENG  @0 Walker circulation @5 10
C03 10  X  SPA  @0 Circulación Walker @5 10
C03 11  2  FRE  @0 Transport @5 11
C03 11  2  ENG  @0 transport @5 11
C03 11  2  SPA  @0 Transporte @5 11
C03 12  2  FRE  @0 Anomalie @5 12
C03 12  2  ENG  @0 anomalies @5 12
C03 12  2  SPA  @0 Anomalía @5 12
C03 13  2  FRE  @0 Modèle @5 13
C03 13  2  ENG  @0 models @5 13
C03 13  2  SPA  @0 Modelo @5 13
C03 14  2  FRE  @0 Gaz effet serre @5 14
C03 14  2  ENG  @0 greenhouse gas @5 14
C03 15  X  FRE  @0 Observation par satellite @5 15
C03 15  X  ENG  @0 Satellite observation @5 15
C03 15  X  SPA  @0 Observación por satélite @5 15
C03 16  2  FRE  @0 Circulation atmosphérique @5 16
C03 16  2  ENG  @0 atmospheric circulation @5 16
C03 17  2  FRE  @0 Télédétection spatiale @5 17
C03 17  2  ENG  @0 Space remote sensing @5 17
C03 17  2  SPA  @0 Teledetección espacial @5 17
N21       @1 055
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0045187 INIST
ET : The influence of tropospheric biennial oscillation on mid-tropospheric CO2
AU : JINGQIAN WANG; XUN JIANG; CHAHINE (Moustafa T.); LIANG (Mao-Chang); OLSEN (Edward T.); CHEN (Luke L.); LICATA (Stephen J.); PAGANO (Thomas S.); YUNG (Yuk L.)
AF : Department of Earth and Atmospheric Sciences, University of Houston/Houston, Texas/Etats-Unis (1 aut., 2 aut.); Jet Propulsion Laboratory, California Institute of Technology/Pasadena, California/Etats-Unis (3 aut., 5 aut., 6 aut., 7 aut., 8 aut.); Research Center for Environmental Changes, Academia Sinica/Taipei/Taïwan (4 aut.); Graduate Institute of Astronomy, National Central University/Jhongli/Taïwan (4 aut.); Division of Geological and Planetary Sciences, California Institute of Technology/Pasadena, California/Etats-Unis (9 aut.)
DT : Publication en série; Niveau analytique
SO : Geophysical research letters; ISSN 0094-8276; Coden GPRLAJ; Etats-Unis; Da. 2011; Vol. 38; No. 20; L20805.1-L20805.6; Bibl. 3/4 p.
LA : Anglais
EA : Mid-tropospheric CO2 retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO2 interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO2 for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO2 transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO2 anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO2 over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO2 is to be smaller than that in the AIRS observations.
CC : 001E; 001E01; 220
FD : Troposphère; Oscillation biennale; Dioxyde de carbone; Air; Variation interannuelle; Région Pacifique; Périodicité; Résistance mécanique; Mousson; Circulation Walker; Transport; Anomalie; Modèle; Gaz effet serre; Observation par satellite; Circulation atmosphérique; Télédétection spatiale
ED : troposphere; Biennal oscillation; Carbon dioxide; air; Interannual variation; Pacific region; periodicity; strength; monsoons; Walker circulation; transport; anomalies; models; greenhouse gas; Satellite observation; atmospheric circulation; Space remote sensing
SD : Oscilación bienal; Carbono dióxido; Variación interanual; Región Pacífico; Periodicidad; Resistencia mecánica; Monzón; Circulación Walker; Transporte; Anomalía; Modelo; Observación por satélite; Teledetección espacial
LO : INIST-16687.354000501660820390
ID : 14-0045187

Links to Exploration step

Pascal:14-0045187

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The influence of tropospheric biennial oscillation on mid-tropospheric CO
<sub>2</sub>
</title>
<author>
<name sortKey="Jingqian Wang" sort="Jingqian Wang" uniqKey="Jingqian Wang" last="Jingqian Wang">JINGQIAN WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Atmospheric Sciences, University of Houston</s1>
<s2>Houston, Texas</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xun Jiang" sort="Xun Jiang" uniqKey="Xun Jiang" last="Xun Jiang">XUN JIANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Atmospheric Sciences, University of Houston</s1>
<s2>Houston, Texas</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chahine, Moustafa T" sort="Chahine, Moustafa T" uniqKey="Chahine M" first="Moustafa T." last="Chahine">Moustafa T. Chahine</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liang, Mao Chang" sort="Liang, Mao Chang" uniqKey="Liang M" first="Mao-Chang" last="Liang">Mao-Chang Liang</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Research Center for Environmental Changes, Academia Sinica</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Graduate Institute of Astronomy, National Central University</s1>
<s2>Jhongli</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Olsen, Edward T" sort="Olsen, Edward T" uniqKey="Olsen E" first="Edward T." last="Olsen">Edward T. Olsen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chen, Luke L" sort="Chen, Luke L" uniqKey="Chen L" first="Luke L." last="Chen">Luke L. Chen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Licata, Stephen J" sort="Licata, Stephen J" uniqKey="Licata S" first="Stephen J." last="Licata">Stephen J. Licata</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pagano, Thomas S" sort="Pagano, Thomas S" uniqKey="Pagano T" first="Thomas S." last="Pagano">Thomas S. Pagano</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yung, Yuk L" sort="Yung, Yuk L" uniqKey="Yung Y" first="Yuk L." last="Yung">Yuk L. Yung</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Division of Geological and Planetary Sciences, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0045187</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 14-0045187 INIST</idno>
<idno type="RBID">Pascal:14-0045187</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The influence of tropospheric biennial oscillation on mid-tropospheric CO
<sub>2</sub>
</title>
<author>
<name sortKey="Jingqian Wang" sort="Jingqian Wang" uniqKey="Jingqian Wang" last="Jingqian Wang">JINGQIAN WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Atmospheric Sciences, University of Houston</s1>
<s2>Houston, Texas</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xun Jiang" sort="Xun Jiang" uniqKey="Xun Jiang" last="Xun Jiang">XUN JIANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Atmospheric Sciences, University of Houston</s1>
<s2>Houston, Texas</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chahine, Moustafa T" sort="Chahine, Moustafa T" uniqKey="Chahine M" first="Moustafa T." last="Chahine">Moustafa T. Chahine</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liang, Mao Chang" sort="Liang, Mao Chang" uniqKey="Liang M" first="Mao-Chang" last="Liang">Mao-Chang Liang</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Research Center for Environmental Changes, Academia Sinica</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Graduate Institute of Astronomy, National Central University</s1>
<s2>Jhongli</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Olsen, Edward T" sort="Olsen, Edward T" uniqKey="Olsen E" first="Edward T." last="Olsen">Edward T. Olsen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chen, Luke L" sort="Chen, Luke L" uniqKey="Chen L" first="Luke L." last="Chen">Luke L. Chen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Licata, Stephen J" sort="Licata, Stephen J" uniqKey="Licata S" first="Stephen J." last="Licata">Stephen J. Licata</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pagano, Thomas S" sort="Pagano, Thomas S" uniqKey="Pagano T" first="Thomas S." last="Pagano">Thomas S. Pagano</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yung, Yuk L" sort="Yung, Yuk L" uniqKey="Yung Y" first="Yuk L." last="Yung">Yuk L. Yung</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Division of Geological and Planetary Sciences, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Geophysical research letters</title>
<title level="j" type="abbreviated">Geophys. res. lett.</title>
<idno type="ISSN">0094-8276</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Geophysical research letters</title>
<title level="j" type="abbreviated">Geophys. res. lett.</title>
<idno type="ISSN">0094-8276</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biennal oscillation</term>
<term>Carbon dioxide</term>
<term>Interannual variation</term>
<term>Pacific region</term>
<term>Satellite observation</term>
<term>Space remote sensing</term>
<term>Walker circulation</term>
<term>air</term>
<term>anomalies</term>
<term>atmospheric circulation</term>
<term>greenhouse gas</term>
<term>models</term>
<term>monsoons</term>
<term>periodicity</term>
<term>strength</term>
<term>transport</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Oscillation biennale</term>
<term>Dioxyde de carbone</term>
<term>Air</term>
<term>Variation interannuelle</term>
<term>Région Pacifique</term>
<term>Périodicité</term>
<term>Résistance mécanique</term>
<term>Mousson</term>
<term>Circulation Walker</term>
<term>Transport</term>
<term>Anomalie</term>
<term>Modèle</term>
<term>Gaz effet serre</term>
<term>Observation par satellite</term>
<term>Circulation atmosphérique</term>
<term>Télédétection spatiale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mid-tropospheric CO
<sub>2</sub>
retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO
<sub>2</sub>
interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO
<sub>2</sub>
for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO
<sub>2</sub>
transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO
<sub>2</sub>
anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO
<sub>2</sub>
over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO
<sub>2</sub>
is to be smaller than that in the AIRS observations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0094-8276</s0>
</fA01>
<fA02 i1="01">
<s0>GPRLAJ</s0>
</fA02>
<fA03 i2="1">
<s0>Geophys. res. lett.</s0>
</fA03>
<fA05>
<s2>38</s2>
</fA05>
<fA06>
<s2>20</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The influence of tropospheric biennial oscillation on mid-tropospheric CO
<sub>2</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JINGQIAN WANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XUN JIANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHAHINE (Moustafa T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIANG (Mao-Chang)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>OLSEN (Edward T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHEN (Luke L.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LICATA (Stephen J.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>PAGANO (Thomas S.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>YUNG (Yuk L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Earth and Atmospheric Sciences, University of Houston</s1>
<s2>Houston, Texas</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Research Center for Environmental Changes, Academia Sinica</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Graduate Institute of Astronomy, National Central University</s1>
<s2>Jhongli</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Division of Geological and Planetary Sciences, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s2>L20805.1-L20805.6</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16687</s2>
<s5>354000501660820390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0045187</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Geophysical research letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Mid-tropospheric CO
<sub>2</sub>
retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO
<sub>2</sub>
interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO
<sub>2</sub>
for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO
<sub>2</sub>
transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO
<sub>2</sub>
anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO
<sub>2</sub>
over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO
<sub>2</sub>
is to be smaller than that in the AIRS observations.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Oscillation biennale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Biennal oscillation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Oscilación bienal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Air</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>air</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Variation interannuelle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Interannual variation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Variación interanual</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Région Pacifique</s0>
<s2>564</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>Pacific region</s0>
<s2>564</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Región Pacífico</s0>
<s2>564</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Périodicité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>periodicity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Periodicidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Résistance mécanique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>strength</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Resistencia mecánica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Mousson</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>monsoons</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Monzón</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Circulation Walker</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Walker circulation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Circulación Walker</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Transport</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>transport</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Anomalie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>anomalies</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Anomalía</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>models</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Gaz effet serre</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>greenhouse gas</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Circulation atmosphérique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>atmospheric circulation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Télédétection spatiale</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>Space remote sensing</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Teledetección espacial</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>055</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0045187 INIST</NO>
<ET>The influence of tropospheric biennial oscillation on mid-tropospheric CO
<sub>2</sub>
</ET>
<AU>JINGQIAN WANG; XUN JIANG; CHAHINE (Moustafa T.); LIANG (Mao-Chang); OLSEN (Edward T.); CHEN (Luke L.); LICATA (Stephen J.); PAGANO (Thomas S.); YUNG (Yuk L.)</AU>
<AF>Department of Earth and Atmospheric Sciences, University of Houston/Houston, Texas/Etats-Unis (1 aut., 2 aut.); Jet Propulsion Laboratory, California Institute of Technology/Pasadena, California/Etats-Unis (3 aut., 5 aut., 6 aut., 7 aut., 8 aut.); Research Center for Environmental Changes, Academia Sinica/Taipei/Taïwan (4 aut.); Graduate Institute of Astronomy, National Central University/Jhongli/Taïwan (4 aut.); Division of Geological and Planetary Sciences, California Institute of Technology/Pasadena, California/Etats-Unis (9 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Geophysical research letters; ISSN 0094-8276; Coden GPRLAJ; Etats-Unis; Da. 2011; Vol. 38; No. 20; L20805.1-L20805.6; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Mid-tropospheric CO
<sub>2</sub>
retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO
<sub>2</sub>
interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO
<sub>2</sub>
for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO
<sub>2</sub>
transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO
<sub>2</sub>
anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO
<sub>2</sub>
over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO
<sub>2</sub>
is to be smaller than that in the AIRS observations.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Troposphère; Oscillation biennale; Dioxyde de carbone; Air; Variation interannuelle; Région Pacifique; Périodicité; Résistance mécanique; Mousson; Circulation Walker; Transport; Anomalie; Modèle; Gaz effet serre; Observation par satellite; Circulation atmosphérique; Télédétection spatiale</FD>
<ED>troposphere; Biennal oscillation; Carbon dioxide; air; Interannual variation; Pacific region; periodicity; strength; monsoons; Walker circulation; transport; anomalies; models; greenhouse gas; Satellite observation; atmospheric circulation; Space remote sensing</ED>
<SD>Oscilación bienal; Carbono dióxido; Variación interanual; Región Pacífico; Periodicidad; Resistencia mecánica; Monzón; Circulación Walker; Transporte; Anomalía; Modelo; Observación por satélite; Teledetección espacial</SD>
<LO>INIST-16687.354000501660820390</LO>
<ID>14-0045187</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000008 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000008 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0045187
   |texte=   The influence of tropospheric biennial oscillation on mid-tropospheric CO2
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023